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ABSTRACT

While the class of congestion games has been thoroughly
studied in the multi-agent systems literature, settings with
incomplete information have received relatively little atten-
tion. In this paper we consider a setting in which the cost
functions of resources in the congestion game are initially
unknown. The agents gather information about these cost
functions through repeated interaction, and observations of
costs they incur. In this context we consider the following
requirement: the agents’ algorithms should themselves be
in equilibrium, regardless of the actual cost functions and
should lead to an efficient outcome. We prove that this
requirement is achievable for a broad class of games: re-
peated symmetric congestion games. Our results are appli-
cable even when agents are somewhat limited in their ca-
pacity to monitor the actions of their counterparts, or when
they are unable to determine the exact cost they incur from
every resource. On the other hand, we show that there exist
asymmetric congestion games for which no such equilibrium
can be found, not even an inefficient one. Finally we con-
sider equilibria with resistance to the deviation of more than
one player and show that these do not exist even in repeated
resource selection games.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent Systems; J.4 [Social and Behavioral
Sciences]: Economics

General Terms

Theory, Economics.

Keywords

Learning Equilibrium, Congestion Games, Repeated Games.

1. INTRODUCTION
The general class of congestion games is known to model

many real-world systems quite well. In congestion games,
agents use resources which they are allowed to pick from a
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given set. The cost that is associated with each resource de-
pends on the number of agents that use it. For example, in a
transportation setting, roads can be thought of as resources
that are being used by the drivers. The cost (travel time) of
using a road is increased if other drivers have chosen to use
it as well. Another example is advertisement. Advertisers
can choose to place ads with different agencies or publish-
ers. The effectiveness of these ads decreases and their price
increases as more agents attempt to advertise in the same
place.

An appealing property of congestion games is that if the
costs of resources are common knowledge, the game is guar-
anteed to have a pure Nash equilibrium. However, in many
scenarios the cost functions are initially unknown to the par-
ticipating agents. One approach to deal with this uncer-
tainty is by incorporating probabilistic assumptions about
the cost functions. The agents are then often assumed to
have common knowledge about the governing probability
distributions – an assumption that is sometimes unrealis-
tic. An alternative model makes no assumptions about the
information possessed by agents at the beginning of the in-
teraction. Instead, agents gather information by learning
from past observations and then adjust their behavior ac-
cordingly.

The above learning process is carried out through repeated
interactions. Indeed, interactions in multi-agent systems are
often repeated. For example, drivers travel to work every
weekday and can slowly accumulate information about con-
gestion in different routes. As they obtain this information
they may start to behave differently to minimize their travel
time.

Game theory, among its many other goals, aspires to sug-
gest a “reasonable” behavior for agents that are interacting
in a strategic environment. Ideally we want a game-theoretic
solution to have two main properties. The first property is
optimality – if the agents follow the prescribed behavior the
outcome should be efficient. The second property is stabil-
ity. Stability guarantees that agents will indeed follow the
prescribed behavior, as any agent who deviates from it can
only lose. Learning Equilibrium [5] has been suggested as
an equilibrium between learning algorithms employed by the
players in a repeated setting. The equilibrium is achieved
in an ex-post manner: a single player will not change its
behavior even if it knows all the missing information.

In contrast to the full information setting, in which the
Nash equilibrium is guaranteed to exist, it is uncommon to
have an ex-post equilibrium in partial information settings,
and a Learning Equilibrium is thus much more rare.
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Our main result in this paper shows that a pure Learning
Equilibrium exists in a relatively large class of games: the
class of repeated symmetric congestion games. The equi-
librium we demonstrate is efficient as it maximizes social
welfare for the set of players, and uses no randomization (it
is in pure strategies). With this result, we generalize a pre-
vious one that has shown the existence of (mixed strategy)
Learning Equilibria in symmetric and monotonic resource
selection games [3] and greatly extend the set of games for
which Learning Equilibrium is known to exist1.

The equilibrium relies on the fact that agents are able to
see each other’s actions and are able to observe the cost they
themselves incur from selecting a specific resource within
some bundle. We go on to show that even these assump-
tions can be relaxed: it is sufficient that agents see only the
actions of players that have selected resources they them-
selves have selected. It is also enough if players observe only
the total cost they endure from their selected bundle of re-
sources, without any detail on which resource is responsible
for any part of the cost. In the latter case, we demonstrate
the existence of a mixed strategy Learning Equilibrium (in
contrast to the pure strategy equilibrium we show in our
other results).

We proceed to show that the case of asymmetric games
is not as favorable in general. In contrast to the symmet-
ric case, there are asymmetric repeated congestion games
in which no Learning Equilibrium exists (not even an inef-
ficient one). We also demonstrate that in some games it is
impossible to reach an efficient solution that resists devia-
tion by more than one player, even in the highly restricted
setting of resource selection games.

Our work should be contrasted with the line of research
that deals with convergence to a Nash equilibrium but with-
out ensuring the stability of the convergence behavior itself
(in our case it is the behavior of players that is in equilib-
rium and not necessarily the action profile to which they
converge).

1.1 Structure of the Paper
The remainder of the paper is organized as follows: In

Section 2 we briefly survey the related work. In Section 3
we formally define congestion games, the repeated games
setting, and the Learning Equilibrium. We then go on to
prove in Section 4 that symmetric congestion games have a
pure strategy Learning Equilibrium. In Section 5 we extend
this result to a case where agents have a more limited view
of the actions taken by other players. Then we consider,
in Section 6, the case in which agents can only observe the
total cost they incur instead of the cost per resource, and
show that an equilibrium exists there too. We then exhibit
in Section 7 a result that shows that asymmetric congestion
games may have no Learning Equilibrium. Finally, in Sec-
tion 8 we show that there exist simple repeated congestion
games that do not have an equilibrium that is resistant to
deviations of more than one player.

2. RELATED WORK
Congestion games [20, 18] are central to work in CS/AI,

1Resource selection games are congestion games in which
players are only allowed to select bundles of resources that
consist of a single resource. Here we consider all congestion
games and do not require monotonicity

Game Theory, Operations Research, and Economics. In par-
ticular, congestion games have been extensively discussed in
the price of anarchy literature, e.g., [15]. Most of the work on
congestion games assumes that all parameters of the game
are commonly known, or at least that there is commonly
known Bayesian information regarding the unknown param-
eters (see [11, 12]). However, in many situations, the game,
and in particular the resource cost functions are unknown.
When the game under discussion is played only once, one has
to analyze it using solution concepts for games with incom-
plete information without probabilistic information (known
also as pre-Bayesian games)2. Alternatively, if the game is
played repeatedly the players may learn about the resource
cost functions by observing the feedback for actions they
performed in the past. This brings us to the study of rein-
forcement learning in (initially unknown) repeated conges-
tion games 3.

Learning in the context of multi-agent interactions has
attracted the attention of researchers in psychology, eco-
nomics, artificial intelligence, and related fields for quite
some time ([17, 14, 7, 4, 8, 13, 9, 10]). Much of this work
uses repeated games as a model for such interactions. There
are various definitions of what would define a satisfactory
learning process. In this paper we adopt a most desirable
and highly demanding requirement: we wish the players’
learning algorithm to conform a Learning Equilibrium [5,
6, 2, 19] that leads to an economically efficient outcome.
Other works also explore ex-post equilibria in settings that
are somewhat different than a repeated game (but still with
repeated interactions) [16, 21]. As illustrated in the above
mentioned work, it is a highly attractive and non-trivial chal-
lenge to characterize general sets of games for which Learn-
ing Equilibria exist. One such result has been obtained for
resource selection games [3]. This paper extends this study
to the much broader and central class of symmetric conges-
tion games.

3. PRELIMINARIES
We begin by defining a congestion game G.

Definition 3.1. Let N = {1, . . . , n} be a set of players.
Let R be a set of resources, and let Σi ⊆ 2R be the set
of allowed resource bundles that player i may select. Each
resource r ∈ R has a cost function associated with it: cr :
N → R that describes the cost of the resource, as it depends
on the number of players that use it. Each player i selects a
subset of resources σi ∈ Σi and then endures a cost that is
the sum of costs from all the resources in its selected bundles:

Costi =
∑
r∈σi

cr(kr(σ)) (1)

where we denote by kr(σ) the number of players that chose
resource r in profile σ. To simplify notation, we will denote
the cost attributed to resource r in a strategy profile σ by
cr(σ) while keeping in mind that this still only depends on
the number of agents that use resource r. We assume that
the cost of each resource is bounded by below by some value

2Such an analysis was done in [1] in a resource selection
game, in which the number of participants is unknown.
3This study should be distinguished from that of best- and
better-response dynamics that are known to converge to
equilibrium in congestion games with complete information
(see [18]).
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L: ∀r, k L ≤ cr(k). The congestion game G is then defined
as the tuple G = (N ,R, {Σi}i∈N , {cr}r∈R).

Symmetric congestion games are then defined as follows:

Definition 3.2. A congestion game is symmetric if all
players have the same set of allowed bundles Σ. I.e.,

∀i ∈ N Σi = Σ

the game is then defined by the tuple G = (N ,R, Σ, {cr}r∈R).

Notice that much of the work in computer science deals with
symmetric congestion games. In particular the class of re-
source selection games is a very restricted instance of sym-
metric congestion games in which resource bundles always
contain a single resource.

We adopt the standard notation in game theory for a
strategy profile: σ ∈ (Σ1 × . . . × Σn). We denote by σ−i

a strategy profile of all players but the i’th player: σ−i ∈
(Σ1× . . .×Σi−1×Σi+1× . . .×Σn) so that σ = (σi, σ−i). We
also extend this notation in a similar manner so that σ−(i,j)

is a strategy profile of all players except players i and j.

3.1 Repeated Games and Learning Equilibria
Since we are interested in scenarios in which agents can

learn about their environment, we will be looking at a re-
peated games setting. The players will be interacting for a
predetermined number of rounds T . The setting is that of
partial information: there is a set of possible states of the
world S from which a specific state S ∈ S is selected. This
state is unknown to the players, and in our case consists of
the costs of each resource. At every round of the repeated
game, players play the same congestion game, and have costs
as we have defined above (given the state of the world). At
the end of the repeated game, their total cost is the average
obtained during all rounds of play4.

We assume that players start the game without knowledge
about the state – i.e., they do not know the cost functions
of each resource. They only have information about the
allowed bundles Σ and on the number of other players. The
strategy of a player at a given round t will depend on its
past observation history Ht

i . We denote by H the set of all
possible histories. Thus a strategy s in the repeated game is
a function from the set of all possible histories, to the set of
resource bundles a player may choose from s : H → Σ. We
will overload notation and denote by Costi(s) the average
cost for player i when the strategy profile s is played in
the corresponding repeated game; in the case where mixed
strategies are considered Costi(s) will refer to the expected
average cost for the player.

The exact history that is available to the players differs
according to the exact scenario. In different cases players
may be able to observe different things about the game.

Definition 3.3. We say that a repeated congestion game
has perfect monitoring if each player is able to view the ac-
tions of all other players, and the cost he himself endured
per resource. We shall say that a repeated congestion game
has imperfect monitoring if a player can only observe his

4There are several possible alternatives to this formulation
of the repeated game. For example, an infinite game can
also be considered, with or without a discount factor on
the payments at each round. These formulations lead to
analogous results to those that we show in this paper.

cost on each resource and the identity of other players who
have selected resources that he uses and is unable to see the
actions of other players on resources that he does not use at
the time.

We will mostly be interested in games with perfect moni-
toring. In the next section we show that these games have a
pure ε−Learning Equilibrium. We will then extend our re-
sults to games with imperfect monitoring, and later briefly
discuss other possible limitations on the level of monitoring.

Definition 3.4. A strategy profile s = (s1, . . . , sn) of the
players is considered an ε-Learning Equilibrium if a deviat-
ing player will not gain more than ε utility from deviating
no matter what state of the world has been selected. That is,

∀i ∈ N ∀S ∈ S ∀s′i Costi(si, s−i) < Costi(s
′
i, s−i) + ε

4. A LEARNING EQUILIBRIUM IN SYM-

METRIC CONGESTION GAMES
In this section we shall describe an equilibrium strategy

profile for players in a repeated symmetric congestion game.
Notice that our result applies to general congestion games,
in which the cost of each resource may increase or decrease
as more players use it, and not only to monotonic games.

While the setting we examine is not cooperative, it is
useful to observe the best cooperative solution that can be
played. We denote by OPT the best aggregate social utility
achievable if all players cooperate in the single shot conges-
tion game. OPT = minσ

∑n
i=1 Costi(σ)

We now show that if the game is allowed to continue long
enough, then we have an ε-equilibrium for any ε > 0, and
that this equilibrium can be as close as we want to the op-
timal social welfare (i.e., we are able to get close to the
cooperative solution even in a non-cooperative partial infor-
mation setting).

Theorem 4.1. Let G be a symmetric congestion game.
For any ε ∈ R, ε > 0 there exists T ∈ N such that a repeated
game on G with perfect monitoring that lasts t > T rounds
has an ε-Learning Equilibrium in pure strategies, where the
cost of each player is at most OPT

n
+ ε.

Before we prove the Theorem, we describe the equilibrium
strategy itself. It consists of three phases:

1. Cooperative learning: In this phase players explore
the costs of resources under different congestion conditions.
A deterministic schedule in which every player experiences
every resource under every possible congestion setting is se-
lected and players perform their part in this schedule. If
no player deviates, then by the end of this phase all of the
values cr(k) are known by all players and the playing opti-
mally phase begins. If any player deviates from the schedule
at any point, then the learn-or-punish phase is initiated im-
mediately (other players can detect this because they are
able to observe each other’s actions during play).

2. Playing optimally: In this phase, each player computes
the strategy profile that yields the optimal social utility (ties
between different profiles are broken according to a prede-
termined order). The players play this profile, while cycling
through the different roles in it (i.e., they take turns using
the different bundles this profile dictates). This guarantees
each of them an equal share of the optimal payment (when



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

236

the game goes on long enough). This phase goes on until the
game ends, or until some player deviates from the planned
schedule, at which point the learn-or-punish phase begins.

3. Learn-or-punish: This phase is reached if any of the
players has deviated from the planned sequence of actions
in any of the previous phases5. It goes on indefinitely. Note,
that there may be values of cr(k) that are still unknown to
some or all of the n − 1 honest players. The actions taken
at this phase guarantee that one of the honest players either
learns a previously unknown cost of a resource, or that the
deviating player is punished. To do so, the n−1 honest play-
ers optimistically estimate the cost of every resource with an
unknown cost cr(k). We define the optimistic estimate ĉr(k)
as follows. for k = 1, 2, . . .

ĉr(k) =

{
cr(k) if the value is known,
L (the lower bound on costs) otherwise.

(2)
The players then play a Nash equilibrium in the congestion
game with only n − 1 players (they ignore the existence of
the n’th player). If one of the honest players observes a
previously unknown value, in the next rounds it will signal
the value it learned to the other players. This signaling
is done through the bundles that this player selects in the
following rounds (which is something that the other players
can observe). After this signaling is complete, all players
have shared knowledge regarding this new value and they
resume playing the Nash equilibrium for n − 1 players with
newly calculated values of ĉr(k). If no new information is
learned, they continue to play the same Nash equilibrium
indefinitely. We will show below that in this case, the n’th
player is being punished.

Clearly, if all players play according to the proposed strat-
egy and no one deviates, they all learn the costs associated
with various resources and receive their share (up to some
ε that is associated with the costs they endure during the
learning phase) of the OPT/n payment. All that remains is
to show that if one of the players deviates, he will have a
higher cost.

We allow players to signal the values of cr(k) that they
detect to each other, so that if one of the honest players
learn a value, he can communicate it to the others. This
can be done either through communication channels that
they share (cheap talk) or through the actions that they
select that are visible to the other players.

Formally, during the learn-or-punish phase, all honest play-
ers play a Nash equilibrium in the game

Ĝ = (N \ {n},R, Σ, {ĉr}r∈R)

that has n − 1 players and optimistic resource costs ĉr. We
denote by Ĉi() the costs of players in the game Ĝ. The
following lemma demonstrates the idea that is at the heart
of the learn-or-punish behavior:

Lemma 4.2. Assuming that the honest players play in the
game G a Nash equilibrium that was computed according to
the parameters of the game Ĝ, then if the n’th player does
not receive a lower payment than all other players, some
players learns the value of a previously unknown resource
cost function.

5Since we are only interested in proving resilience to the
deviation of one player, we do not describe the actions of
players when more than a single player has deviated.

The intuition behind the proof of the lemma is that if the
deviating player fairs better than some other player i in the
game G, then this is because the deviator selected a bundle
that has cheaper resources. Player i may be using some of
these resources as well, and is paying a similar cost for this
subset, therefore the difference must come from resources
that the deviator and i did not both choose. Because the
game is symmetric, player i could have chosen the bundle
the deviator picked which would get him a lower cost even
in the game Ĝ. Since the bundle was not picked some of the
items in i’s current bundle are under-estimated. This only
occurs if their exact value is unknown, and so player i learns
something new. A more formal proof follows below:

Proof of Lemma 4.2. Let σ be the strategy profile that
is played in the congestion game. Without loss of generality,
we assume that the deviating player is player n. The other
n − 1 players are following the prescribed behavior and are
playing a Nash equilibrium σ−n of Ĝ (only they play it in
the game G in reality). I.e.,

∀i ∈ N \ {n} ∀σ′
i ∈ Σ Ĉi(σi, σ−(n,i)) ≤ Ĉi(σ

′
i, σ−(n,i))

(3)
Let us also assume that the n’th player has a strategy that
costs him less than the cost attained by some other player i
in the game G. I.e.,∑

r∈σi

cr(σ) >
∑

r∈σn

cr(σ) (4)

For resources that both players n and i use, the cost is equal,
and so the inequality must come from the resources that are
not shared by both:∑

r∈σi\σn

cr(σ) >
∑

r∈σn\σi

cr(σ) (5)

Furthermore, the unshared resources of players i, n have the
same cost if the other player is removed from the game:

∀r ∈ σi \ σn cr(σ) = cr(σi, σ−(n,i)) (6)

∀r ∈ σn \ σi cr(σ) = cr(σn, σ−(n,i)) (7)

If we assume contrary to the lemma that player i learns
nothing in this round of the game, then he must know all
values cr(σ) for resources r ∈ σi. We therefore have:

∑
r∈σi\σn

ĉr(σi, σ−(n,i)) =
∑

r∈σi\σn

cr(σi, σ−(n,i)) >

>
∑

r∈σn\σi

cr(σn, σ−(n,i)) ≥
∑

r∈σn\σi

ĉr(σn, σ−(n,i)) (8)

For the shared resources between players i and n we also
know: ∑

r∈σi∩σn

ĉr(σi, σ−(n,i)) =
∑

r∈σi∩σn

ĉr(σn, σ−(n,i)) (9)

Now, if we combine Equations 8 and 9 we get:∑
r∈σi

ĉr(σi, σ−(n,i)) >
∑

r∈σn

ĉr(σn, σ−(n,i)) (10)

This contradicts the fact that σ−n is a Nash equilibrium in
Ĝ, as the i’th player gains by switching to strategy σn.

Now that we are armed with Lemma 4.2, we can proceed
with the proof of Theorem 4.1:



Moshe Tennenholtz, Aviv Zohar • Learning Equilibria in Repeated Congestion Games

237

Proof sketch for Theorem 4.1. If all players follow
the equilibrium strategy, they have a cost of OPT/n (on
average) once they start the playing optimally phase. This
is preceded by the cooperative learning phase in which they
suffer a higher cost. Note however that this more costly
phase is of finite length and so we can select the length of
the game T to be large enough so that their average cost is
no larger than OPT/n + ε/2.

Now, if a player deviates from the prescribed behavior, the
other players immediately switch to the learn-or-punish be-
havior. From this point on, the deviating player will receive
a payment that is no better than any other player. Note
that the worst player always has a cost of at least OPT/n
(Because OPT is the lowest social utility achievable). This
happens in all rounds with the exception of a finite num-
ber of rounds in which the other players learn the values of
previously unknown resources. I.e., the deviator has a finite
number of rounds with a low cost, and all remaining rounds
have a cost that is at least OPT/n. We can therefore set the
number of rounds T to be large enough so that the deviat-
ing player suffers an average cost of at least OPT/n − ε/2.
This implies that the deviator does not gain more than ε in
utility from the deviation.

5. AN EQUILIBRIUM WITH IMPERFECT

MONITORING
It is sometimes unreasonable to assume that a player is

able to view the actions of all other players. For example,
if our players are processes that are using resources such
as CPUs, one could expect that each player could see who
is using the same resources that he is using, but will be
unaware of other actions. We show that there is a Learning
Equilibrium even with imperfect monitoring.

Theorem 5.1. Let G be a symmetric congestion game.
For any ε ∈ R, ε > 0 there exists T ∈ N such that a repeated
game on G with imperfect monitoring that lasts t > T rounds
has an ε-Learning Equilibrium in pure strategies, where the
cost of each player is at most OPT

n
+ ε.

The main difficulty in proving this theorem is identifying
which player has deviated, and then punishing him success-
fully. Our proof will use a strategy that ensures us that a
deviating player will be identified by the others, or will oth-
erwise be among a pair of suspect players and will still be
punished.

Proof sketch. The equilibrium strategy is very similar
to that used in Theorem 4.1. Once again, we have several
phases:

1. Cooperative Learning: Similarly to Theorem 4.1,
players act according to a predetermined schedule that al-
lows each player to choose every resource with every possible
combination of loads. If some player notices a deviation by
another (not all players always notice at the same time be-
cause of the limited monitoring), it moves to the blaming
phase (that is described below). Otherwise, players move
on to the playing optimally phase after everyone has learned
every needed value.

2. Playing-Optimally: This phase is also similar to that
in Theorem 4.1, and again, any player that notices a devi-
ation moves to the blaming phase. Otherwise, this phase
goes on indefinitely.

3. Blaming: In this phase players initially cause other
players to notice a deviation (by selecting resources in a
manner that will conflict with the scheduled tasks of oth-
ers). Once all players are aware that a deviation by some-
one has occured, the players go on to signal to each other6

which player they have seen deviating first (this deviator
may be the original one, or just a player that has previously
observed a deviation and signalled them), and at what time
this deviation originally occured. Once each player has sig-
nalled to the other players who has deviated and when, they
begin the learn-or-punish phase.

4. Learn-Or-Punish: This phase is reached after a blam-
ing phase has been completed. At this point, all players have
shared knowledge of the claims of players regarding devia-
tions. Let us denote by i the player that has been reported
(by another player) as the earliest deviator. If more than
one player reports i as the deviator then he clearly must be
guilty, and the remaining players play an equilibrium of n−1
players in the game just as in Theorem 4.1. Otherwise, only
one player j has reported that i deviated. We consider both
i and j as suspects. The n− 2 players who are not suspects
will play their predetermined roles in the Nash equilibrium
for n − 1 players. Players i and j will both be required to
play the same role (of player n−1) in this equilibrium. This
goes on until one of the players learns some new value, in
which case he signals it to the other players. Notice that
signalling to the other players about new values is a bit dif-
ficult, but a player that has something to signal, can notify
others that he has something to signal to them by deviating
in a manner that they can observe, and then signalling to
them. We discuss more details about exactly how to signal
below.

Notice, that if indeed we have only one deviator, and he is
identified by one of the players, then he is always one of the
players i, j. Either he is the earliest deviating player that
caused the chain of deviations and triggered the blaming
phase, or he tries to escape this by assigning blame to some
other player that he claims has deviated earlier. Either way,
one of the players i, j is the guilty party, so we can trust the
n − 2 other players to do their part in the learn-or-punish
phase. Then, at least one of the players i, j has been falsely
accused, and can be trusted to play the role required to
complete the Nash equilibrium of n− 1 players in the game.
Therefore, as we have shown in Lemma 4.2, the deviating
player will be punished, or one of the other players will learn
a new and previously unknown value.

If the player who learns this new value is one of the n− 2
trustworthy players, then that player can signal this to the
others, otherwise, one of the trustworthy players switches
roles with the role of the suspect player in the Nash equi-
librium, and he is guaranteed to learn this new value, or he
will be able to recognize the deviating player among the two
suspects. He can then signal his findings to the others.

Since all signalling, and learning rounds are of a finite
and bounded number, a sufficiently large number of rounds
can be selected to guarantee that the deviator does not gain
more than ε utility, for any positive ε.

6The players can signal to each other by selecting the same
bundle together, and then taking turns in communicating
bits (conveyed as selecting the same bundle as the others or
some other bundle)
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6. NON-DETAILED MONITORING
At times, the exact contribution of a specific component

in the system to the congestion is unknown, and only the
total cost that is payed for a certain bundle can be observed.
We define the following:

Definition 6.1. A repeated congestion game has non-
detailed monitoring if players are able to observe the actions
of their counterparts, but can only observe the sum of costs
they themselves incur over different resources they chose and
cannot observe in detail the exact cost of every resource.

Is there a Learning Equilibrium in this restricted case of
monitoring? Since players only observe the total cost of the
bundle, it is not as simple to under-estimate the cost func-
tions as we have done in the detailed-monitoring case. The
following example shows that a pure strategy equilibrium
is more complicated than in the detailed-monitoring case.
If such an equilibrium exists, then at the very least, play-
ers will have to rotate between strategy profiles in order to
punish.

Example 6.1. Let us define a repeated congestion game
with non-detailed monitoring for two players with three re-
source bundles A, B, C. Each bundle contains resources as
depicted in Figure 1(a) (the names of the resources match
the bundles they appear in). Assume that there exists a pure-

(a) The structure of
the game.

(b) A possible as-
signment of costs.

Figure 1: The game in Example 6.1.

strategy Learning Equilibrium in this setting, and that player
1 is following it (player 2 will be our deviator). Now, since
player 1 is playing a pure strategy σ1, we can construct the
deviation strategy as follows:

If σ1 will pick bundle

⎧⎨
⎩

A, pick C;
B, pick A;
C, pick B.

I.e., in Figure 1(a), the deviator will always select the bun-
dle that is counter clockwise from the one picked by player
1. Now, assume that in this case, player 1 always observes
a cost of 1. He can assign costs to resources in many ways.

One possible assignment of costs is depicted in Figure 1(b)
(where resources that do not have costs written next to them
are assumed to have a cost of 0 when used by one or two
players, and a cost denoted by x/y means a cost of x units
for a single player and y units for two players).

Notice that the cost of the deviator may be 0, 1, or 2 de-
pending on which pair of bundles are picked. Therefore, if
player 1 chooses correctly (resource bundle γ or β), he will
guarantee that the deviator never gains. However, player
1 cannot distinguish which resource bundle among A, B, C

matches α, β, γ. This is because all his observations are sym-
metric – both the game structure, and the costs he has seen.

If player 1 keeps rotating between bundles A, B, C equally,
it can be shown that he will either observe a previously un-
seen value, or he will guarantee player 2 an average cost of
1, so a more complex punishment strategy may yet exist.

At this point, we are not sure if games with non-detailed
monitoring have a pure strategy Learning Equilibrium (but
we conjecture that they do have one). However, we exhibit
the following theorem, that guarantees the existence of a
Learning Equilibrium in mixed strategies:

Theorem 6.1. Let G be a symmetric congestion game.
For any ε ∈ R, ε > 0 there exists T ∈ N such that a repeated
game on G with non-detailed monitoring that lasts t > T
rounds has an ε-Learning Equilibrium in mixed strategies,
where the cost of each player is at most OPT

n
+ ε.

The proof relies on the technique presented in [6], where
all symmetric 2 player games are shown to have a Learning
Equilibrium (the authors extend the proof to more players,
but require a correlation device to coordinate the actions of
the players when they punish the deviator — we show that
this is not needed in congestion games).

Proof sketch. The equilibrium strategy is similar to
that in Theorem 4.1, with the exception of the learn-or-
punish phase. If all players cooperate, they can observe all
costs for all possible combinations of actions, and then play
optimally. If a deviating player is discovered at any point,
the learn-or-punish phase that is described below is initi-
ated. We assume without loss of generality, that the n’th
player is the deviator. To describe the learn-or-punish phase
we require the following definition:

Definition 6.2. Let Σ be the set of available resource
bundles. We say that a bundle σn ∈ Σ that belongs to the
deviating player is fully known when the n−1 honest players
know their costs for all possible action profiles:

∀i 	= n ∀σ−n ∈ Σn−1 Costi(σn, σ−n) is known. (11)

Let K denote the set of fully known bundles at a given mo-
ment in time. Notice that the players are aware of all pos-
sible payments they can get if the deviator selects a bundle
from K, and more specifically, the costs in the sub-game in
which only bundles from K are selected by any of the players
are also known. This subgame is in fact a symmetric conges-
tion game that is equivalent to: G′ = (N ,R,K, {cr}r∈R).
In the learn-or-punish phase players take one of two actions:

1. An exploratory action: The player randomly selects
a resource bundle from Σ according to the uniform distribu-
tion and plays that selection.

2. A punishment action: The player plays (in G) his
role in the Nash equilibrium of n − 1 players of the game
G′ = (N ,R,K, {cr}r∈R).

The learn or punish phase proceeds as follows: The honest
players begin by doing exploratory actions. They proceed
until some bundle of the deviator becomes fully known (as
in Definition 6.2). Once a bundle is fully known, each player
performs an exploratory action with some small probability
p, and performs a punishment action with probability 1− p.

From Lemma 4.2, we know that if all the honest players
play a Nash equilibrium of n−1 players in G′, and the devia-
tor also plays a strategy from this subgame, then the cost of
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the deviator is no better than that of any other player. The
probability p is set to be low enough to make sure that if
the deviator keeps playing only bundles from the fully known
set of bundles, it will be punished with a high enough prob-
ability. On the other hand, if the deviator plays bundles
that are outside of the fully known set K, then there is a
small chance that the players will all perform exploratory
actions and will learn the costs associated with a previously
unknown action profile — this eventually leads to a larger
set of fully known resource bundles. The length of the re-
peated game can be set to be long enough to ensure that
players have enough time to learn (in expectation) all the
unknown strategy profiles in the game, and then to punish
the deviator long enough to ensure he does not gain more
than ε from the deviation.

7. ASYMMETRIC CONGESTION GAMES
As we have seen, symmetric congestion games posses a

Learning Equilibrium. We relied heavily on the ability of
players to chose the same bundle of resources as the deviat-
ing player and thus learn its true cost, or even punish the
deviator by adding congestion to that bundle. What hap-
pens in asymmetric congestion games, when players have
access to different bundles? We exhibit the following result:

Theorem 7.1. There exists a repeated asymmetric con-
gestion game that has no Learning Equilibrium (not even in
mixed strategies), even with perfect monitoring.

Proof. We shall show a simple congestion game with
only 3 resources and 2 players in which an equilibrium does
not exist. Let R = {A, B, C} and let the allowed bundles
for the players be Σ1 = {{A}, {B}} and Σ2 = {{A}, {C}}.
We define the costs of the resources as follows:

cA(1) = 0 ; cA(2) = 1

cB(1) ∈ {0.5, α} ; cC(1) ∈ {0.5, α} (12)

where resources B, C each have two possible costs for the
case a single player chooses them, and α >> 1 is some large
cost. Notice, that since these resources are each accessible
only by a single player, only this player can learn their cost.
Thus, the cost of every player’s privately accessible resource
is in fact private. We will show that there is no possible
Learning Equilibrium in a repeated game of this form. A
Learning Equilibrium (if one existed) would have to provide
us with an equilibrium strategy for each state in an ex-post
fashion. That is, no matter which costs are selected for
resources B and C, no player will deviate from the proposed
strategy, even if he is aware of the exact state of nature.

We will describe the states of nature in this example using
tuples of the form (cB(1), cC(1)). For example the state of
nature (0.5, α) describes the case in which resource B costs
0.5, and resource C costs α.

We assume by contradiction that an equilibrium strategy
profile σ exists. The following facts then apply:

Claim 7.2. In the state (α, 0.5), if both players play an
equilibrium strategy, then player 1 uses resource A during at
least 1 − 1/α of the time.

Proof of claim. Observe that player 1’s cost from us-
ing resource A is at most cA(2) = 1, while its cost when using
resource B is exactly cB(1) = α. In equilibrium, player 1
cannot pay an average cost per round that is higher than

1 unit, because otherwise it would benefit him to deviate
from this strategy and select resource A constantly, thereby
paying less. If the average cost cannot exceed 1, then player
1 cannot choose resource B too often. Let ρ denote the
fraction of the time that player 1 chooses resource B. If
we optimally assume that player 1’s cost whenever he uses
resource A is 0, his cost is then:

1 ≥ Cost1 ≥ ρ · α + (1 − ρ) · 0 (13)

Which implies ρ ≤ 1
α
.

Claim 7.3. In the state (α, 0.5), when both players follow
the equilibrium strategy, it cannot be that player 2 selects
resource A more than 2/α of the time.

Proof of claim. Player 2 has a fall-back strategy that
will allow him to receive a payment of 0.5 every round, re-
gardless of the actions of the other player. His equilibrium
strategy must therefore yield a payment that is no smaller.
According to Claim 7.2, We know that player 1 does not
access resource A at most 1

α
of the time. We denote by γ

the fraction of the time in which player 2 accesses resource
A together with player 1. If we assume that player 2 selects
resource A whenever player 1 does not, we can bound the
cost of player 2 as follows:

1

α
· 0 + γ · 1 + (1 − γ − 1

α
) · 0.5 ≤ Cost2 ≤ 0.5 (14)

which implies γ ≤ 1
α
. Therefore, for the remainder of the

time, player 1 accesses resource A alone. I.e., for a period
of at least 1 − 2

α
he suffers 0 cost.

Now, to conclude our proof and reach a contradiction, we
shall examine the behavior of the players in equilibrium in
state (0.5, 0.5). Notice, that at most one player can occupy
resource A alone at any given round, and so at least one
player access resource A alone less than half of the time.
Without loss of generality, we assume that this player is
player 1. If we optimistically assume that player 1 managed
to avoid selecting resource A at the same time as player 2
we obtain the following bound on his cost:

Cost′1 ≥ 0.5 · 0 + 0.5 · 0.5 = 0.25 (15)

However, if that player deviates, it can gain a better payoff.
All it has to do is play as if the state of the world is (α, 0.5).
In that case he has exclusive access to resource A for the
majority of the time (according to claims 7.2 and 7.3), and
his cost is thus less than 2

α
·1. This is a contradiction to our

assumption that an equilibrium strategy profile exists.

8. STRONG EQUILIBRIA IN REPEATED

CONGESTION GAMES
It is sometimes possible to find an equilibrium strategy

that resists deviation by more than one player. We show
here that this does not hold for the general class of repeated
congestion games. In fact, there exist very simple repeated
resource selection games (with complete information) where
there always exists a coalition of players that can deviate to
a profile that is strictly better for all players in the coalition.

Theorem 8.1. There exists a repeated resource selection
game with no equilibrium that resists deviations by more
than one player – even in a full information setting.
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Proof. We give an example of such a game with 3 play-
ers and 2 resources. Let the set of players be N = {1, 2, 3}
and the of resources be R = {a, b}. The game is a symmetric
resource selection game, that is, the allowed resources bun-
dles for each player are Σ = {{a}, {b}}. The cost functions
of the resources are: ca(1) = cb(1) = 1 ; ca(2) = cb(2) =
2 ; ca(3) = cb(3) = 2. The congestion game that these
define has a minimal cost when two of the players select
the same resource, and the third player selects a different
resource—a total cost of 5. Any strategy profile s for the
repeated game will have a total cost that is at least as high:

3∑
i=1

Costi(s) ≥ 5 (16)

Now, we shall prove that in any strategy profile s, a coalition
of two players can benefit from deviating. First we claim
that there exists a coalition T ∈ {{1, 2}, {2, 3}, {3, 1}} so
that both players in the coalition have a cost of 1.5 or higher
and at least one of the players pays strictly more. If two out
of the three players have a cost below 1.5 then Equation 16
implies that the third player’s cost is higher than 2 – this is
impossible since the highest cost in the game is 2, and so at
most one player gets a cost of 1.5 or less. It is also impossible
that all three players pay a cost of 1.5 or less, since the total
cost would then be only 4.5 and this contradicts Equation 16.
Therefore, a player that pays more than 1.5 exists.

Next we shall show that this coalition of two players can
gain by deviating to a different strategy profile in which the
total expected cost of each player is lower. The strategy is
as follows: At every round, The two deviating players will
each choose a different resource (i.e., one will select resource
a, and the other will select resource b). It is easy to see that
since the third player occupies one of the resources, one of
the deviators will pay a cost of 2, and the other will pay 1.
I.e., their average cost will always be 1.5. (which is lower
than their average cost if they do not deviate).

In order to make sure that both players in the coalition
gain in expectation, they can try to distribute the costs
among them in the following manner: the third player (who
did not deviate) decides according to the equilibrium strat-
egy which resource to chose. His choice may be non deter-
ministic, so he may only assign a probability to each resource
selection. The other two players can thus decide which of
the two resources each of them will pick. one of them will
have a higher chance of getting a cost of 2 (depending on the
randomized selection of the honest player). In this manner,
over many rounds they can attempt to achieve an average
payment of 1.5 + ε for one of the players, and 1.5− ε for the
other player. If ε is chosen to be small enough, both deviat-
ing players gain in expectation from the deviation.
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